
How to handle (extended) Freebusy
Lists - Concept for improving Kolab

Version 0.92+dev20080503

WARNING – this is a work
in progress, the document
will change, especially it's
structure.
It is made available early as it
contains some rationale how Server
2.2 will be/already is implemented.

12.11.2007 0.91 Added Design principles. Changed
towards one read-access control-list.
Added needed implementation section.

Bernhard Reiter

26.3.2008 0.92 Considered feedback and restruction
suggestions from Gunnar Wrobel.
Describing Outlook's FB issues.

Bernhard Reiter

X.2008 0.92+dev20080503 It will be „pxfb“ and „pxfb-readable-for".
Added TODO for client behaviour.

Bernhard Reiter

Notations

fb freebusy list
pfb partial freebusy list
xfb extended freebusy list
pxfb partial extended freebusy list

TODO: This document shall supplement freebusy.txt not supercede it.
TODO: Clients should not display old freebusy lists without warning. See
kolab/issue2622 (usability problem with cached freebusy lists: Very old ones might
be shown without network.)

Related documents

http://kolab.org/cgi-bin/viewcvs-kolab.cgi/doc/architecture/freebusy.txt, Rev 1.17 (
(2005-06-30) and 1.18 (2008-03-26). Rev. 1.17 has been the current spec for
server and clients implementation for freebusy lists.

https://wald.intevation.org/plugins/scmsvn/viewcvs.php/trunk/research/outlook-
fbtype.txt?root=kolab describes how Outlook handles different FBTYPES in
freebusys lists.

[Storage20rc5] Kolab2 Storage Format Specification, Version 2.0rc5, available from
http://www.kolab.org/documentation.html This describes the Kolab-XML storage
format.

[Architecture2006] Kolab2 Architecture Draft Version Draft cvs20060921, available
from http://www.kolab.org/documentation.html .

RFC 2445, defines the syntax for freebusy lists.

"IMAP METADATA Extension", Cyrus Daboo, 27-Feb-07,
http://www.ietf.org/internet-drafts/draft-daboo-imap-annotatemore-11.txt

RFCs 2446, 2739, 4791

Aim

With Kolab we want to be able to generate and download freebusy (fb) lists
describing the free and busy times of a user. The plain fb is mainly used together
with time overviews.

The most prominent use case is inviting participants or resources to an event.
In this case a tabular ganttchart is the preferred way to present the
availability of the invited participants. The status of a participant is typically visually
coded into either colours or patterns. This use of freebusy lists can be considered
standard use, their format is described in RFC 2445 and several clients already
implement this. Most important is Outlook.

A further use case is gaining a quick overview about the availability of people
and resources. E.g. a team leader is interested in quickly finding for a specific point
in time, what her team members are busy with and where. It should be possible for
users to have private appointments for which the team leader does not see the
details.

For this use case, the standard freebusy lists were extended for the Kolab 2
Concept. Currently the extended freebusy lists contain the topic of an event and
are accessible to those that have read access to the folder in question.
But for the use case described above, additional functionality is needed.

http://kolab.org/cgi-bin/viewcvs-kolab.cgi/doc/architecture/freebusy.txt
http://www.kolab.org/documentation.html
http://www.kolab.org/documentation.html
https://wald.intevation.org/plugins/scmsvn/viewcvs.php/trunk/research/outlook-fbtype.txt?root=kolab
https://wald.intevation.org/plugins/scmsvn/viewcvs.php/trunk/research/outlook-fbtype.txt?root=kolab

The need to model this use case with an extended freebusy list arises from privacy
concerns and the technical limitation of Outlook 2003, which can only handle one
main calender folder fully. Other folders can be displayed in Outlook 2003, but they
behave differently regarding reminders, Outlook's internal account of freebusy lists
and receiving email updates to the appointments.

This concept focusses on the extended attributes "location" and "subject". If a team
leader requires further details he is requested to obtain read access to the calendar
folder instead.

Design principles

There are two important design principles applied here
1. „as complex as necessary and as simple as possible“, this is important so

that users can develop an understanding who has access to which part of
their data. Each new access mode or configuration will raise the chance that
users get confused about the options and reveal information to the wrong
party.

2. Be prepared for changes of this concept in the future. After users will have
been exposed to the solution there will be a much better understanding of
the use case. It is important that the concept presented here does not
constitute a dead-end then.

Problems

With Kolab we offer the user many different calendar folders. The freebusy
list of an user shall reflect the real situation as good as possible in order
to provide a useful hint to other users who intend to interact with them.

Let us consider one use case: There is a group account with a calender folder.
Three people have write access and agree to each other to use this folder in a way
that they all three need to participate to the events saved in there. Any of them
can just write directly in the folder. A confirmation from the others is not necessary.
No invitation email is send from one to the other two. To be useful the events
would need to be freebusy relevant to all three people – thus show up in their fb
list. There are other use cases where events from a folder a user as access to shall
not end up in the fb list of the user.

The user must be able to explicitly grant extended freebusy information access
to other users and groups for each specific calendar folder. The default mode shall
be to deny access.

We require a different folder-specific access mode.

New folder-specific access controls

● none this is the implicit default for all users and groups
● pxfb-readable-for explicitly grant access to the extended freebusy list to

a list of users and groups

It would be possible to add a permission for each additional field, in this case for
„subject“ and „location“. This is disregarded because it is not yet clear if the
increased complexity will be necessary for the potential use case. There are many
appointments where „subject“ and „location“ belong together or can be concluded
from each other. An example is an appointment at the „Dentist“ on „Brady Street
10“. The user would need to keep in mind in which folder the xfb readers could see
one or the other and act accordingly.

In addition to these folder specific settings the privacy needs are to be
handled for each individual event, when the pxfb is generated.

Event specific control of freebusy list generation

The normal and extended freebusy lists information are filtered out from regular
event objects. There are settings in the event to influence what is saved in the lists.
We need to offer something that maps from the options that current client
implementations are already offering. [Storage20rc5] Chapter 9 Format of Events,
describes four values for the tag show-time-as being one of free, tentative, busy,
or outofoffice. The value have the following effect on the fb list generation:

● busy, tentative, outofoffice The time of the event will be marked as BUSY
● free The event will not be entered in the fb list.

Some clients only offer the explicit choice busy or free (e.g. Kontact Proko2 2.1.12
or enterprise35 20080321).

Some clients additionally offer GUI elements to set the sensitivity of an event.
[Storage20rc5] section 4.1. Common Fields In All Types, reflects this in the
attribute sensitivity being one of private, confidential and public. Kontact offers to
set all three values, while Outlook 2003 only as a bi-value toggle for „privat“. The
sensitivity value affect the creation of attributes towards the xfb.

● public this is the implicit default, will add extended attributes
● private will not add extended attributes
● confidential will not add extended attributes

For the extended attributes, we SHOULD use the already offered settings to
determine „subject“ and „location“ information will be generated into the pxfb.

Types of Calendar folders

User folder Calendars

A user may have several personal folders in his account. One folder is called
the default calendar folder. The default folder is used when accepting invitations
within Microsoft Outlook. Kolab clients are encouraged to ask the user if an
invitation should be stored in a different calendar folder.

The structure of user calendar folders is a folder hierarchy below the users
top level folder and looks like

(1) user/user1/calendar fb, default
(2) user/user1/private/calendar
(3) user/user1/anotherhierarchy/calendar fb
(4) user/user1/yetanotherhierarchy/calendar fb

The numbering is for internal reference purposes of this paper. Below the folder
names are indicators for their flags. „fb“ means it is freebusy relevant. „default“
means that the folder in question is the default folder.

Group Calendars

A group may have several calendars (often only one). Technically a group
calendar is just a special user account with more than one user having access
permissions. A group as opposed to a user shall be used to give
folders to several users on an equal level. Each folder has an admin,
which is the person which can give out rights to the folders.

(5) user/group1/calendar fb
(6) user/group1/myhierarchie/calendar
(7) user/group2/myhierarchie/calendar fb
(8) user/group2/otherhierarchy/calendar

Multi-Group Calendars

On a Kolab server there may be several "public folders" containing calendars.
Technically those folder are similar to "anonymous" user accounts
and a better name might be "multi-group folders".

Their intended use is to include a larger number of people, like all members a
company.

Multi-group folders will not be relevant for freebusy lists.

The reason is that within larger groups of people almost never all
of them have to be at an event. E.g. it is better to work with invitations
or a more specific group folder when wanting half of the company to a meeting.

(9) shared.calendar
(10) shared.ahierarchie/calendar
(11) shared.anotherhierarchy/calendar
(12) shared.yetanotherhierarchy/deeper/calendar

Partial (x)fb

Whenever a client writes to a calendar it MUST trigger the server based
generation of the freebusy and the extended freebusy information in the scope of
the corresponding folder. We call these folder-specific freebusy information
partial freebusy or short pfb. For extended freebusy we call them pxfb.

The user specific (x)fb is then generated transparently to the requesting
application on demand from the user specific p(x)fb information. Specific details
about how
to collect the partial information is specified below in the chapter "pxfb
collector".

The following rules apply:

- We add to the Kolab Format Specifiction rules for annotations which allows to
express the fact that this folder is freebusy relevant. See section 2.8 Groupware in
[Architecture2006] which describes the „incidences-for“ annotation.

- The same annotation shall also make that folder alarm relevant.

We define the following cases for annotations with regards to freebusy relevance:

– events in this folder are freebusy relevant for nobody
– events in this folder are freebusy relevant for administrators of this calendar

folder (default)
– events in this folder are freebusy relevant for everyone with read access to this

folder

E.g. in the notation and the example above we have fb flags
on the following folders:

user/user1/calendar (1, fb)
user/user1/anotherhierarchy/calendar (3, fb)

user/user1/yetanotherhierarchy/calendar (4, fb)
user/group1/calendar (1, fb)
user/group2/myhierarchie/calendar (3, fb)

If a client changes the contents of one of those calenders (e.g. adding an event or
modifying some event) it must trigger the creation of the pfb and xpdf as described
below.
The creation of the p(x)fb is executed with the credentials of the user that
modified the calendar. This implies that this user has write permissions to the
specific
folder.

Time spans (x)fb

The duration of a p(x)fb and (x)fb is determined by the sum of the account specific
attribute kolabFreeBusyFuture which is stored in the LDAP directory and a
globally configurable constant kolabFreeBusyPast. While the former is
defined for the kolabInetOrgPerson LDAP objectclass the later is stored in the
kolab objectclass. As all calculations are done on the server the resulting time
is always calculated relative to the servers local timezone.

p(x)fb cache

The pfb and pxfb are written to the accounts pfb cache hierarchy.

FIXME: There are some .FIXME.acl files already.

Empty p(x)fb files are to be avoided.

user1/user1/calendar.pfb
user1/user1/calendar.pxfb
user1/user1/anotherhierarchy/calendar.pxfb
user1/user1/anotherhierarchy/calendar.pfb
user1/user1/yetanotherhierarchy/calendar.pfb
user1/user1/yetanotherhierarchy/calendar.pxfb
group1/group1/calendar.pfb
group1/group1/calendar.pxfb
group2/myhierarchie/calendar.pfb
group2/myhierarchie/calendar.pxfb

If a calendar folder is removed then the client must also trigger the generation of
the corresponding p(x)fb file. In the case of a deleted or empty calendar the p(x)fb
cache file is removed from the system.

The purpose of the p(x)fb cache is to hide the cost in generating the information
from a latency point of view and in order to provide a clean security
implementation as
the p(x)fb cache is generated using the credentials of a priviledged user with write
permissions.

Actually the term pfb cache is a little bit misleading as it actually is an
intermediate store which does not only cache the results of p(x)fb trigger
processes but which implicitly also defines which p(x)fbs are relevant to create the
user specific (x)fb.

The cache files with the .pxfb extension contain in addition to the information
contained in the .pfb files the subject and the location attributes as extracted from
the corresponding calendar folder. When generating the pxfb the script also adds
the public/privat/confidential attribute to the pxfb cache file.

It is useful to generate the pfb and pxfb in the same run as technically the pfb files
are a subset of the pxfb.

Access to the pxfb and xfb information is limited to authenticated users and subject
to further access control while pfb and fb is either accessable for anonymous users
or all authenticated users without further access control. The access rules for (p)fb
is a server wide setting.

Access control to (p)xfb

xfb information is only available to authenticated users. Direct access to the .pxfb
files is denied. The php script providing access to the (p)xfb has to follow the (p)xfb
folder specific access controls.

The xfb access controls are set per folder and can affect either users or groups. The
default is no access. All ACLs are positive and explicit. This means it is not possible
to grant access to everyone in a group except a specific user. If such a szenario is
required the ACLs must be explicitly granted to the users without the use of a
group ACL.

Privacy settings are already provided for when generating the pxfb and they are
therefor not relevant for ACLs.

The xfb ACLs are implemented as IMAP annotations using the the IMAP
annotatemore extension.

In order to add extended attributes to the generated xfb we require explicit ACLs
like

/vendor/kolab/pxfb-readable-for with the attribute value.shared set to who,
a space character seperated list of groups and users who have read-
access.

who={$user|$group} *{<SPACE> {$user|$group}}

Note that the size of the value is limited, but servers should
minimally accept 1024 bytes.

This ACL value is followed when generating the final xfb out of the pxfbs according
to which user requests the xfb.

Format of (x)fb

The format of (x)fb follows the iCalendar standard. The fb must be explicitly
compatible to the Outlook ifb format.
The xfb is identical to the fb but extended with the subject and location attributes

FREEBUSY;X-UID=bGlia2NhbC0xODk4MjgxNTcuMTAxMA==;X-
 SUMMARY=RW1wbG95ZWUgbWVldGluZw==;X-LOCATION=Um9vb
 SAyMTM=:20080131T170000Z/20080131T174500Z

Triggering p(x)fb

On the server we use mod_rewrite to parse URLs like.

https://servername/freebusy/trigger/user1@domain.tld/calendar.pfb
https://servername/freebusy/trigger/group1@domain.tld/calendar.pfb

We use SSL secured basic authentification for transfering the credentials to
the server side code. The server side code then uses these credentials to
access the calendar folders and to write the p(x)fbs. Due to the fact that
triggers are only useful for users having write access to a calendar folder these
access permissions are always sufficient.

In order to trigger creation of a pfb (and pxfb) a HTTP GET request is launched like:

https://servername/freebusy/trigger/X/PATH/FOLDERNAME.pfb

with X being one of
a) primary email address
 Clients triggering for folders of other users could derive
 this from the corresponding imap path component = name

 and then adding "@maildomain" to it.

b) the uid
c) the corresponding imap patch component of the user name
 (the server will try to add @maildomain to it.)

 and PATH and FOLDERNAME being UTF-8(*) encoded IMAP
foldernames.

d) any valid email alias

All pfbs are readable for every (authenticated) user though normal users don't
require to read the pfbs. The p(x)fb collector must be able to read all p(x)fbs from
potentially many servers (multi-location setups).

The pxfb is not directly available to users. When an xfb is requested the
xfb script runs with the users credentials and makes use of another priviledged
script which has full access to the pxfbs. It is the job of the priviledged
script to implement the xfb ACLs. In case an xfb is requested by an anonymous
user the fb is silently returned instead.

Creation of pxfbs happens simulataneously when pfbs are created.

In general all clients writing to calendar folders including the KDE Client
Kontact, the Outlook Clients, the web client and the resource scripts must
trigger the generation of pfbs.

p(x)fb collector

A script which is executed with the credentials of the requesting authenticated
user collects the pfbs in order to create the real fb. This script is also able
to run as the low priviledged Apache user (e.g. kolab-n). A server side setting
defines if anonymous access to fb is granted.

A potentially different script is executed when a user specific xfb is requested.
It uses the credentials as provided by the caller.
This xfb script collects the pxfb information for the specified user deploying another
priviledged script. This priviledged script checks the provided credentials and
provides a subset of the available pxfb information.

If the requesting and authenticated user lacks access permissions
she is returned the plain fb information without any extended attributes.

If a freebusy list is requested the script can just
simply have to recursively get all p(x)fb under the users fb cache hierarchy
and then the ones in the group calendar folders which the user
can read and which are marked fb relevant.

If an extended freebusy list is requested, the script has to use the

given credentials of the users to try to access the pxfbs in the same way.
If access to the pxfb is not possible, use the corresponding pfb.

The URLs for collecting freebusy info are

https://servername/freebusy/group1@domain.tld.ifb
https://servername/freebusy/user1@domain.tld.xfb

Deletion of Calendar folders

When deleting a calendar folder a Kolab client must first delete all
appointments on the server and then immediately call the pfb script

https://servername/freebusy/trigger/X/PATH/FOLDERNAME.pfb

After calling the pfb generation script the Kolab client may immediately delete the
emtpy folder.

On the other hand the server side pfb creation script MUST be able to handle empty
or unexisting calendar folders. A trigger call to an unexisting or empty folder leads
to deletion of any traces related to this folder in the pfb storage.

(*) It is the job of the p(x)fb creation script to convert the UTF-8 encoded
paths and folder names into the imapd specific naming conventions.

FIXME: actually an empty, but existing calender should result in an fb showing
"FREE", semantically. So why include the „empty“ calender in here? Maybe because
the script cannot find out if the calender is not there in contrast to having no
access to it?

Future
Ideas for possible future enchancements:

● add referal type files for the cache hierarchy that make the collector script
search for an pfb elsewhere. Advantage: Client could use other servers or
local files for fb, too.

● add a deep parsing mode for the multi-group folders that creates pfbs by
looking into all appointments and copies them to a special place in the cache
hierarchy. Possible advantages: Easing the modelling of larger groups.

● add encryption for privacy/confidential purposes.
● Propose a standard how freebusy information can be found from an email

address. Something like an MX record?

Needed implementations

Server-side

The code that generated the pxfb files needs to add the „location“ information to
the pxfb, unless the event is „private“. The location is already added since

http://kolab.org/cgi-bin/viewcvs-kolab.cgi/server/kolab-resource-handlers/kolab-
resource-handlers/freebusy/Attic/freebusy.class.php.in Rev 1.13 (2007-07-05), now
module „kolab-freebusy“.

Also the ACL information for the pxfb need to be saved close to it after being read
out from the IMAP annotation.

Access to the pxfbs must be checked against the ACL.

ACL maintenance

For each folder there must be a way for the responsible user to set the xfb ACLs
annotations. An interface for this SHOULD be offered by the clients. As webclient
and KDE client are Free Software this can be done for sure. For other clients it would
be good for users to have a fallback system. The webadmin build into the Kolab
Server should have a link to the subpage that does this. This should be usable even
when the full Horde webclient is not installed and enabled on the server.

The server root can already use „cyradm“ to set the ACL as annotation. Webadmin
Administrators which can change „multi-group folders“ should be able to also set
the xfb ACLs for those folders (which contain calenders).

Display of xfbs

In order for the team leader to get the overview, the xfb information must be
presented in a compact way for a set of groups.

The „/fbview“ must be extended to also show the location, both in the text and in
the mouseover tooltip.

The KDE Kolab Client must be extended to use the xfb information in the chart
when selecting a time for a specific appointment. In addition there should be a way
to display the xfb/fb information for a set of users. Those users would need to be
configured. Ideas: a) Use a local distribution list for configuration of a group of users
do display. b) Add a specific list of users for which there are only xfb information to
the horizontal calender view. c) as alternative to b) add a new view for xfb
information.

http://kolab.org/cgi-bin/viewcvs-kolab.cgi/server/kolab-resource-handlers/kolab-resource-handlers/freebusy/Attic/freebusy.class.php.in
http://kolab.org/cgi-bin/viewcvs-kolab.cgi/server/kolab-resource-handlers/kolab-resource-handlers/freebusy/Attic/freebusy.class.php.in

	Notations
	Related documents
	Aim
	Design principles
	Problems
	New folder-specific access controls
	Event specific control of freebusy list generation

	Types of Calendar folders
	User folder Calendars
	Group Calendars
	Multi-Group Calendars
	Partial (x)fb
	Time spans (x)fb
	p(x)fb cache
	Access control to (p)xfb
	Format of (x)fb
	Triggering p(x)fb

	p(x)fb collector
	Deletion of Calendar folders

	Future
	Needed implementations
	Server-side
	ACL maintenance
	Display of xfbs

